3.2.22 \(\int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx\) [122]

3.2.22.1 Optimal result
3.2.22.2 Mathematica [A] (verified)
3.2.22.3 Rubi [A] (verified)
3.2.22.4 Maple [C] (verified)
3.2.22.5 Fricas [A] (verification not implemented)
3.2.22.6 Sympy [F(-1)]
3.2.22.7 Maxima [F]
3.2.22.8 Giac [F]
3.2.22.9 Mupad [B] (verification not implemented)

3.2.22.1 Optimal result

Integrand size = 22, antiderivative size = 107 \[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {8 \cos (a+b x)}{15 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}+\frac {32 \sin (a+b x)}{45 b \sin ^{\frac {3}{2}}(2 a+2 b x)}-\frac {64 \cos (a+b x)}{45 b \sqrt {\sin (2 a+2 b x)}} \]

output
-8/15*cos(b*x+a)/b/sin(2*b*x+2*a)^(5/2)-1/9*csc(b*x+a)^3/b/sin(2*b*x+2*a)^ 
(3/2)+32/45*sin(b*x+a)/b/sin(2*b*x+2*a)^(3/2)-64/45*cos(b*x+a)/b/sin(2*b*x 
+2*a)^(1/2)
 
3.2.22.2 Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.58 \[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {\sqrt {\sin (2 (a+b x))} \left (113 \csc (a+b x)+17 \csc ^3(a+b x)+5 \csc ^5(a+b x)-15 \sec (a+b x) \tan (a+b x)\right )}{180 b} \]

input
Integrate[Csc[a + b*x]^3/Sin[2*a + 2*b*x]^(5/2),x]
 
output
-1/180*(Sqrt[Sin[2*(a + b*x)]]*(113*Csc[a + b*x] + 17*Csc[a + b*x]^3 + 5*C 
sc[a + b*x]^5 - 15*Sec[a + b*x]*Tan[a + b*x]))/b
 
3.2.22.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 4788, 3042, 4796, 3042, 4791, 3042, 4792, 3042, 4779}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (a+b x)^3 \sin (2 a+2 b x)^{5/2}}dx\)

\(\Big \downarrow \) 4788

\(\displaystyle \frac {4}{3} \int \frac {\csc (a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)}dx-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{3} \int \frac {1}{\sin (a+b x) \sin (2 a+2 b x)^{5/2}}dx-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4796

\(\displaystyle \frac {8}{3} \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)}dx-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{3} \int \frac {\cos (a+b x)}{\sin (2 a+2 b x)^{7/2}}dx-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4791

\(\displaystyle \frac {8}{3} \left (\frac {4}{5} \int \frac {\sin (a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)}dx-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\right )-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{3} \left (\frac {4}{5} \int \frac {\sin (a+b x)}{\sin (2 a+2 b x)^{5/2}}dx-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\right )-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4792

\(\displaystyle \frac {8}{3} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\cos (a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)}dx+\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\right )-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{3} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\cos (a+b x)}{\sin (2 a+2 b x)^{3/2}}dx+\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\right )-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4779

\(\displaystyle \frac {8}{3} \left (\frac {4}{5} \left (\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}-\frac {2 \cos (a+b x)}{3 b \sqrt {\sin (2 a+2 b x)}}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\right )-\frac {\csc ^3(a+b x)}{9 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

input
Int[Csc[a + b*x]^3/Sin[2*a + 2*b*x]^(5/2),x]
 
output
(8*((4*(Sin[a + b*x]/(3*b*Sin[2*a + 2*b*x]^(3/2)) - (2*Cos[a + b*x])/(3*b* 
Sqrt[Sin[2*a + 2*b*x]])))/5 - Cos[a + b*x]/(5*b*Sin[2*a + 2*b*x]^(5/2))))/ 
3 - Csc[a + b*x]^3/(9*b*Sin[2*a + 2*b*x]^(3/2))
 

3.2.22.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4779
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^( 
p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(b*g 
*m)), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && EqQ[ 
d/b, 2] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]
 

rule 4788
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p 
_), x_Symbol] :> Simp[(e*Sin[a + b*x])^m*((g*Sin[c + d*x])^(p + 1)/(2*b*g*( 
m + p + 1))), x] + Simp[(m + 2*p + 2)/(e^2*(m + p + 1))   Int[(e*Sin[a + b* 
x])^(m + 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] & 
& EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && LtQ[m, -1] && NeQ[m 
+ 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 4791
Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] 
 :> Simp[Cos[a + b*x]*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp 
[(2*p + 3)/(2*g*(p + 1))   Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p + 1), x], x 
] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !Int 
egerQ[p] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 4792
Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] 
 :> Simp[(-Sin[a + b*x])*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + S 
imp[(2*p + 3)/(2*g*(p + 1))   Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p + 1), x] 
, x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  ! 
IntegerQ[p] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 4796
Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/sin[(a_.) + (b_.)*(x_)], x_Symbol] 
 :> Simp[2*g   Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; FreeQ[{ 
a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] 
&& IntegerQ[2*p]
 
3.2.22.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 139.42 (sec) , antiderivative size = 560, normalized size of antiderivative = 5.23

method result size
default \(-\frac {\sqrt {-\frac {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}{\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1}}\, \left (5 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{10}+192 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )+1}\, \sqrt {-2 \tan \left (\frac {a}{2}+\frac {x b}{2}\right )+2}\, \sqrt {-\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}\, \operatorname {EllipticE}\left (\sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )+1}, \frac {\sqrt {2}}{2}\right ) \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{4}-96 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )+1}\, \sqrt {-2 \tan \left (\frac {a}{2}+\frac {x b}{2}\right )+2}\, \sqrt {-\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}\, \operatorname {EllipticF}\left (\sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )+1}, \frac {\sqrt {2}}{2}\right ) \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{4}-7 \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{8} \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}+2 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{6}+96 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{6}+2 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{4}-96 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{4}-7 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}+5 \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}-1\right )}\right )}{2880 \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{5} \sqrt {\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {x b}{2}\right )}\, b}\) \(560\)

input
int(csc(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/2880*(-tan(1/2*a+1/2*x*b)/(tan(1/2*a+1/2*x*b)^2-1))^(1/2)/tan(1/2*a+1/2 
*x*b)^5*(5*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*tan(1/2*a+1 
/2*x*b)^10+192*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*(tan(1/ 
2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2)*(-tan(1/2*a+1/2*x*b) 
)^(1/2)*EllipticE((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2* 
x*b)^4-96*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*(tan(1/2*a+1 
/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2)*(-tan(1/2*a+1/2*x*b))^(1/ 
2)*EllipticF((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*x*b)^ 
4-7*tan(1/2*a+1/2*x*b)^8*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/ 
2)+2*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*tan(1/2*a+1/2*x*b 
)^6+96*(tan(1/2*a+1/2*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/2*x*b)^ 
6+2*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*tan(1/2*a+1/2*x*b) 
^4-96*(tan(1/2*a+1/2*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/2*x*b)^4 
-7*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*tan(1/2*a+1/2*x*b)^ 
2+5*(tan(1/2*a+1/2*x*b)*(tan(1/2*a+1/2*x*b)^2-1))^(1/2))/(tan(1/2*a+1/2*x* 
b)^3-tan(1/2*a+1/2*x*b))^(1/2)/b
 
3.2.22.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.22 \[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {\sqrt {2} {\left (128 \, \cos \left (b x + a\right )^{6} - 288 \, \cos \left (b x + a\right )^{4} + 180 \, \cos \left (b x + a\right )^{2} - 15\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 128 \, {\left (\cos \left (b x + a\right )^{6} - 2 \, \cos \left (b x + a\right )^{4} + \cos \left (b x + a\right )^{2}\right )} \sin \left (b x + a\right )}{180 \, {\left (b \cos \left (b x + a\right )^{6} - 2 \, b \cos \left (b x + a\right )^{4} + b \cos \left (b x + a\right )^{2}\right )} \sin \left (b x + a\right )} \]

input
integrate(csc(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="fricas")
 
output
-1/180*(sqrt(2)*(128*cos(b*x + a)^6 - 288*cos(b*x + a)^4 + 180*cos(b*x + a 
)^2 - 15)*sqrt(cos(b*x + a)*sin(b*x + a)) + 128*(cos(b*x + a)^6 - 2*cos(b* 
x + a)^4 + cos(b*x + a)^2)*sin(b*x + a))/((b*cos(b*x + a)^6 - 2*b*cos(b*x 
+ a)^4 + b*cos(b*x + a)^2)*sin(b*x + a))
 
3.2.22.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\text {Timed out} \]

input
integrate(csc(b*x+a)**3/sin(2*b*x+2*a)**(5/2),x)
 
output
Timed out
 
3.2.22.7 Maxima [F]

\[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\int { \frac {\csc \left (b x + a\right )^{3}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(csc(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="maxima")
 
output
integrate(csc(b*x + a)^3/sin(2*b*x + 2*a)^(5/2), x)
 
3.2.22.8 Giac [F]

\[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\int { \frac {\csc \left (b x + a\right )^{3}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(csc(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="giac")
 
output
integrate(csc(b*x + a)^3/sin(2*b*x + 2*a)^(5/2), x)
 
3.2.22.9 Mupad [B] (verification not implemented)

Time = 26.08 (sec) , antiderivative size = 383, normalized size of antiderivative = 3.58 \[ \int \frac {\csc ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {2\,{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}}{15\,b\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^3}-\frac {{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}\,16{}\mathrm {i}}{9\,b\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^4}+\frac {8\,{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}}{9\,b\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^5}+\frac {64\,{\mathrm {e}}^{a\,3{}\mathrm {i}+b\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}}{45\,b\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}-\frac {{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\left (\frac {98{}\mathrm {i}}{45\,b}+\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,38{}\mathrm {i}}{45\,b}\right )\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}}{{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )}^2\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^2} \]

input
int(1/(sin(a + b*x)^3*sin(2*a + 2*b*x)^(5/2)),x)
 
output
(8*exp(a*1i + b*x*1i)*((exp(- a*2i - b*x*2i)*1i)/2 - (exp(a*2i + b*x*2i)*1 
i)/2)^(1/2))/(9*b*(exp(a*2i + b*x*2i)*1i - 1i)^5) - (exp(a*1i + b*x*1i)*(( 
exp(- a*2i - b*x*2i)*1i)/2 - (exp(a*2i + b*x*2i)*1i)/2)^(1/2)*16i)/(9*b*(e 
xp(a*2i + b*x*2i)*1i - 1i)^4) - (2*exp(a*1i + b*x*1i)*((exp(- a*2i - b*x*2 
i)*1i)/2 - (exp(a*2i + b*x*2i)*1i)/2)^(1/2))/(15*b*(exp(a*2i + b*x*2i)*1i 
- 1i)^3) + (64*exp(a*3i + b*x*3i)*((exp(- a*2i - b*x*2i)*1i)/2 - (exp(a*2i 
 + b*x*2i)*1i)/2)^(1/2))/(45*b*(exp(a*2i + b*x*2i) + 1)*(exp(a*2i + b*x*2i 
)*1i - 1i)) - (exp(a*1i + b*x*1i)*(98i/(45*b) + (exp(a*2i + b*x*2i)*38i)/( 
45*b))*((exp(- a*2i - b*x*2i)*1i)/2 - (exp(a*2i + b*x*2i)*1i)/2)^(1/2))/(( 
exp(a*2i + b*x*2i) + 1)^2*(exp(a*2i + b*x*2i)*1i - 1i)^2)